Antivirale Beschichtungen und Zellkultur-Oberflächen maßgeschneidert herstellen

Verfahren der Kieler Materialwissenschaft ermöglicht erstmals umfassenden Vergleich von Beschichtungen für biomedizinische Anwendungen

Der Halteknopf im Bus, die Tasten im Fahrstuhl oder die Schutzscheibe am Anmeldetresen in der Arztpraxis: Täglich kommen wir mit einer Vielzahl von Oberflächen in Kontakt. Spezielle Beschichtungen aus Kunststoff verleihen ihnen bestimmte Eigenschaften, zum Beispiel zum Schutz vor Viren. Ein Team aus der Materialwissenschaft der Christian-Albrechts-Universität zu Kiel (CAU) hat jetzt erstmals verschiedene biomedizinische Beschichtungen umfassend verglichen und untersucht, was bei Interaktionen mit der Haut, mit Zellen oder mit Viren passiert. Ihre Ergebnisse haben sie im Fachmagazin Advanced Materials Interfaces veröffentlicht und in einem ersten Industrieprojekt mit antiviralem Glas angewendet.

Die Materialwissenschaftler Torge Hartig (links) und Stefan Schröder haben zum ersten Mal die Eigenschaften von Polymerbeschichtungen für biomedizinische Anwendungen in einer umfassenden Studie verglichen.
Die Materialwissenschaftler Torge Hartig (links) und Stefan Schröder haben zum ersten Mal die Eigenschaften von Polymerbeschichtungen für biomedizinische Anwendungen in einer umfassenden Studie verglichen. (Bild: Julia Siekmann, Uni Kiel)

In Zusammenarbeit mit dem Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, dem Nanotechnology Research Centre Ägypten und dem National Cancer Institute der Universität Kairo hat das Forschungsteam der CAU sechs Beschichtungsmaterialien für biomedizinische Anwendungen umfassend verglichen. Das Team untersuchte die Wechselwirkungen der Materialoberflächen im Kontakt mit Atemwegsviren, Krebszellen und Bindegewebszellen. „Wir haben uns zum Beispiel angeschaut, wo Schlüsselproteine, wie das Spikeprotein des Coronavirus, auf Materialoberflächen andocken und auf welche Art die Oberfläche antiviral wirkt“, sagt Materialwissenschaftler Torge Hartig, Erstautor der Studie. Für antivirale Beschichtungen gegen Coronaviren konnte das Team zeigen, dass sich solche Interaktionen auch am Computer berechnen lassen, um die Vielzahl in Frage kommender Materialien einzugrenzen.

Herstellungsmethode macht den Unterschied

Möglich wurde diese detaillierte Untersuchung erst durch die Methode, mit der das Kieler Team die Beschichtungen herstellt. Über viele Jahre haben sie die sogenannte initiierte chemische Gasphasenabscheidung, kurz „iCVD“ (Initiated chemical vapor deposition), am Lehrstuhl für Materialverbunde von Professor Franz Faupel erforscht und weiterentwickelt. „Damit können wir transparente Beschichtungsfilme herstellen und ihre Schichtdicke hochpräzise zwischen 10 Nanometern und 10 Mikrometern einstellen. Ihre Oberfläche ist ultraglatt, extrem gleichmäßig und weist keine störenden Defekte auf“, sagt Hartig.

Das ist deshalb so entscheidend, weil beim Kontakt mit Beschichtungen normalerweise zahlreiche Faktoren eine Rolle spielen. Bei konventionellen Polymerbeschichtungen können zum Beispiel die Struktur ihrer Oberfläche, chemische Prozesse, Lösungsmittelrückstände oder Materialdefekte die Wechselwirkungen mit Viren oder Zellen beeinflussen. „Mit unserer Technologie stellen wir so reine Beschichtungen her, dass sich bis auf chemische Prozesse alle anderen Faktoren ausschließen lassen und wir die eigentlichen Wechselwirkungen zwischen Beschichtung und Viren oder Zellen fundamental untersuchen können“, so Hartig weiter, der über biomedizinische iCVD-Beschichtungen promoviert.

Vom Rettungswagen bis zur Supermarktkasse: Beschichtungen mit Fensterhersteller getestet

Den Herstellungsprozess ihrer Beschichtungen können die Materialwissenschaftler sehr gut kontrollieren. Dadurch lassen sich ihre funktionalen Eigenschaften gezielt vorhersagen und festlegen – zum Beispiel, um die hohen Anforderungen in biomedizinischen Umgebungen zu erfüllen. „Wir können Produkte zur Zellkultivierung so beschichten, dass die Zellen besser daran haften und sich leichter kultivieren lassen“, nennt Dr. Stefan Schröder ein Anwendungsbeispiel. Er leitet die iCVD-Aktivitäten des Lehrstuhls. Da die Methode ohne Lösungsmittel und mit wenig Chemikalien auskommt, ist sie außerdem deutlich umweltfreundlicher als herkömmliche, nasschemische Beschichtungsverfahren.

Ihre Erkenntnisse haben die Kieler Materialwissenschaftler gemeinsam mit einem Fensterhersteller aus Süddeutschland in die Praxis umgesetzt. Gefördert wurde die Kooperation durch das Zentrale Innovationsprogramm Mittelstand (ZIM) des Bundesministeriums für Wirtschaft und Klimaschutz. „Wir haben mehrere antivirale Beschichtungen verglichen und die beste auf Fensterglas aufgebracht“, so Schröder. Große Glasfassaden lassen sich damit zwar noch nicht ausstatten, „aber kleine Flächen, die viel Kontakt ausgesetzt sind, wie Touchdisplays in Krankenhäusern und Rettungswagen, Filter in Atemmasken oder EC-Geräte an der Supermarktkasse“, sagt Schröder, der ebenfalls über das iCVD-Verfahren promoviert hat.

Eigenes Unternehmen geplant

Ein Team des Lehrstuhls will die Erkenntnisse aus der iCVD-Forschung der letzten Jahre im industriellen Maßstab anwenden und bereitet derzeit eine Ausgründung vor. Unterstützt werden sie dabei im Rahmen des EXIST-Forschungstransfer-Programms des Bundesministeriums für Wirtschaft und Klimaschutz, das von der Europäischen Union kofinanziert wird. „Unser Ziel ist es, besonders hochwertige Beschichtungen mit maßgeschneiderten Eigenschaften für Medizin und Industrie herzustellen“, sagt Hartig, der noch während seiner Promotion in das Gründungsvorhaben „conformally“ eingestiegen ist. Neben antiviralen Eigenschaften können das zum Beispiel auch wasserabweisende oder isolierende Eigenschaften sein - oder sogar eine Kombination daraus.

Ein Teil der verwendeten Materialien entstandim Sonderforschungsbereich „SFB 1261: Magnetoelektrische Sensoren: Von Kompositmaterialien zu biomagnetischer Diagnose“ und im Graduiertenkolleg 2154 „Materials for Brain“ an der CAU, gefördert durch die Deutsche Forschungsgemeinschaft.

Über das iCVD-Verfahren

Im Gegensatz zu anderen, nasschemischen Beschichtungsmethoden wie Aufdampfen setzen sich beim iCVD-Verfahren (initiierte chemische Gasphasenabscheidung, engl. initiated chemical vapor deposition) die Ausgangsmoleküle neu zusammen, was bis zu nanometerdünne und qualitativ sehr hochwertige Materialschichten ermöglicht. Dazu werden Dämpfe in eine Reaktionskammer geleitet. Durch heiße Filamente brechen Bindungen auf und die Moleküle treffen auf die zu beschichtende Oberfläche, wo sie einen dünnen Film bilden. So lassen sich selbst unebene oder poröse Oberflächen beschichten.

Weitere News

Digitalisierungsminister Dirk Schrödter überreichte die Förderbescheide.
Ralf Bruder, Institut für Robotik und Kognitive Systeme der Universität zu Lübeck, Prof. Dr. Ibrahim Alkatout, Kurt-Semm-Zentrum und Klinik für Gynäkologie und Geburtshilfe des UKSH, Campus Kiel, Digitalisierungsminister Dirk Schrödter, Henrik Guschov, Vater Solution GmbH, und Prof. Dr. Kevin Köser, Institut für Informatik der Christian-Albrechts-Universität zu Kiel (v. l.) (Bild: UKSH)

Digitaler Superzwilling

Die Entwicklung eines „digitalen Superzwillings“ als Grundlage für Innovationen in der roboterassistierten Chirurgie ist Ziel des Forschungsprojekts TWIN-WIN eines Konsortiums um das Kurt-Semm-Zentrum des Universitätsklinikums ...

Weiterlesen …
Das Forschungsteam von UKSH und CAU konnte zeigen, dass der gegen Interleukin-7-Rezeptor gerichtete Antikörper Lusvertikimab sehr effizient Leukämiezellen abtöten kann.
Das Forschungsteam von UKSH und CAU konnte zeigen, dass der gegen Interleukin-7-Rezeptor gerichtete Antikörper Lusvertikimab sehr effizient Leukämiezellen abtöten kann. (Bild: Christian Urban, Uni Kiel)

Neuer Antikörper birgt großes Potenzial zur Bekämpfung von Blutkrebs

Die akute lymphatische Leukämie (ALL) ist die häufigste Krebserkrankung bei Kindern. Diese Form des Blutkrebses, die ebenfalls bei Erwachsenen vorkommt, geht von bösartig entarteten Vorläuferzellen ...

Weiterlesen …
Insgesamt mehr als 50 Wissenschaftlerinnen und Wissenschaftler aus verschiedenen Fachgebieten forschen in dem jetzt verlängerten SFB 1261 „Magnetoelektrische Sensoren“. (Bild: CAU)
Insgesamt mehr als 50 Wissenschaftlerinnen und Wissenschaftler aus verschiedenen Fachgebieten forschen in dem jetzt verlängerten SFB 1261 „Magnetoelektrische Sensoren“. (Bild: CAU)

Kieler Großforschungsprojekt zu Medizin-Sensoren wird verlängert

Wie die Deutsche Forschungsgemeinschaft (DFG) bekannt gab, verlängert sie die Förderung des Sonderforschungsbereichs 1261 „Magnetoelektrische Sensoren: von Kompositmaterialien zu biomagnetischer Diagnose“ an der

Weiterlesen …